
Entire contents Copyright© 2010, Techweb/United Business Media LLC, except where otherwise noted. No portion of this publication may be repro-
duced, stored, transmitted in any form, including computer retrieval, without written permission from the publisher. All Rights Reserved. Articles
express the opinion of the author and are not necessarily the opinion of the publisher. Published by Techweb, United Business Media Limited, 600
Harrison St., San Francisco, CA 94107 USA 415-947-6000.

Editor’s Note 2
by Jonathan Erickson

Techno-News
Computer Gamers Tackle Protein Folding 3
TThhee cchhaalllleennggee iinn ddeevveellooppiinngg tthhee ggaammee wwaass ttoo mmaakkee iitt ffuunn wwhhiillee ssttiillll pprroodduucciinngg vvaalliidd sscciieennttiiffiicc rreessuullttss..

Features
The Requirements Payoff 5
by Karl Wiegers
GGeettttiinngg aa pprroojjeecctt’’ss rreeqquuiirreemmeennttss rriigghhtt ffrroomm tthhee ssttaarrtt ccaann ssppeeeedd ddeevveellooppmmeenntt aanndd wwaarrdd ooffff pprroobblleemmss..

Detecting Endian Issues with Static Analysis Tools 7
by Carl Ek
BBeesstt pprraaccttiicceess ffoorr uussiinngg ssttaattiicc aannaallyyssiiss ttoooollss aanndd eennffoorrcciinngg ccoorrrreecctt pprrooggrraammmmiinngg iinn CC//CC++++..

iPhone: Recording, Playing, and Accessing Video 10
by Brandon Trebitowski
TThhee iiPPhhoonnee 33GG’’ss bbuuiilltt--iinn vviiddeeoo ccaammeerraa lleettss uusseerrss rreeccoorrdd vviiddeeoo aanndd ssaavvee iitt ttoo tthheeiirr mmeeddiiaa lliibbrraarryy..

Technical Writing for the Kindle 12
by Al Stevens
TThhee ““eeBBooookk”” ppaarraaddiiggmm iiss ggaaiinniinngg ppooppuullaarriittyy mmaaiinnllyy bbeeccaauussee ooff tthhee ssuucccceessss ooff AAmmaazzoonn’’ss
KKiinnddllee ee--rreeaaddeerr ddeevviiccee —— bbuutt wwhhaatt ddooeess iitt mmeeaann ffoorr aauutthhoorrss ooff tteecchhnniiccaall bbooookkss??

YAFFS2: Yet Another Flash File System 16
by Sasha Sirotkin
YYAAFFFFSS22,, sshhoorrtt ffoorr ““YYeett AAnnootthheerr FFllaasshh FFiillee SSyysstteemm,,”” iiss aa ffaasstt,, rroobbuusstt ffiillee ssyysstteemm ffoorr NNAANNDD aanndd NNOORR FFllaasshh..

Columns
Q&A: What’s Behind Good Requirements 19
by Jonathan Erickson
AAss VVPP ooff pprroodduucctt ddeevveellooppmmeenntt ffoorr DDuucckk CCrreeeekk TTeecchhnnoollooggiieess,, MMiicchhaaeell WWiitttt ddeeaallss wwiitthh rreeqquuiirreemmeennttss eevveerryy ddaayy..

Book Review 21
by Jonathan Kurz
JJoonnaatthhaann KKuurrzz rreeppoorrttss oonn tthhee rreecciippiieenntt ooff tthhiiss yyeeaarr’’ss JJoolltt AAwwaarrddss iinn tthhee ““BBooookkss”” ccaatteeggoorryy..

Blog of the Month 22
by Mark Nelson
55 TTrriilllliioonn DDiiggiittss ooff PPii

Effective Concurrency 23
by Herb Sutter
HHeerrbb tteellllss yyoouu wwhhyy yyoouu sshhoouulldd pprreeffeerr uussiinngg ffuuttuurreess oorr ccaallllbbaacckkss ttoo ccoommmmuunniiccaattee aassyynncchhrroonnoouuss rreessuullttss..

August 2010The Art and Business of Software Development
D I G E S T

App Inventor (http://appinventor.googlelabs.com/about/) is a tool from Google Labs that is

intended to make it easy for nonprogrammers to create mobile applications for Android-pow-

ered devices. What’s missing in this is the word “good”, as in “ make it easy for non-program-

mers to create good mobile applications.”

Not that you need a degree in computer science or mathematics to create mobile apps, but it does

help at times. Far too often, as reader James Kosin correctly points out, “easy” translates too easily to

sloppy and bloated, as in code I write. But then high-level tools like App Inventor are supposed to pre-

vent that as well.

Instead of writing code with App Inventor, you visually design the way the app looks and use

“blocks” to specify the app’s behavior. Blocks are available for storing information, repeating actions, and

performing actions under certain conditions. Even blocks to talk to services like Twitter.

The concept of blocks that encapsulate functionality isn’t anything new. LEGOs MindStorm, for

instance, implements similar functionality but in “bricks.” Similarly, Apple Computer, led by Smalltalk

guru Dan Ingalls, developed Fabrik (http://wiki.squeak.org/squeak/1227) — “Fa-brick,” get it? — a kit of

computational and UI components that you “wire” together to build new components and applications.

And when your talking about visual programming with blocks, you should, as Ron Martin reminded

me, mention what is probably the most mature such system — LabVIE (http://www.ni.com/labview/)W.

The blocks editor that App Inventor uses is the Open Blocks Java library (http://dspace.mit.edu/han-

dle/1721.1/41550) for creating visual block programming languages. Open Blocks is distributed by the

MIT and derives from thesis research by Ricarose Roque. OpenBlocks lets developers build their own

graphical block programming systems by specifying a single XML file. Open Blocks visual programming

is closely related to the Scratch programming language (http://www.drdobbs.com/tools/209600388;jses-

sionid=ZZCAWU2A0AFYFQE1GHPSKH4ATMY32JVN), another MIT Media Lab project.

The compiler that translates the visual blocks language for implementation on Android uses the

Kawa Language Framework (http://www.gnu.org/software/kawa/), a framework written in Java for imple-

menting high-level and dynamic languages and compiling them into Java bytecodes, and Kawa’s dialect

of the Scheme programming language, developed by Per Bothner and distributed as part of the Gnu

Operating System by the Free Software Foundation.

When it comes to software development, there’s something gripping about the word “visual”. It’s rou-

tinely used in instances that are not visual in any sense of the word, although some uses are more visu-

al than others. One of the true visual programming languages is Cube (http://www.drdobbs.com/archi-

tecture-and-design/184409677;jsessionid=ZZCAWU2A0AFYFQE1GHPSKH4ATMY32JVN) developed

by Marc Najork. As Marc has pointed out, “a true visual-programming language can be considered ‘exe-

cutable graphics,’ with no hidden text.” So is App Inventor a true visual language that will enable pro-

gramming for non-programmers? That remainds to be seen. What do you think?

To get started with App Inventor development, fill out the form at https://services.google.com/fb/

forms/appinventorinterest/. More information is available at http://appinventor.googlelabs.com/learn/.

RReettuurrnn ttoo TTaabbllee ooff CCoonntteennttss

D r . D o b b ’ s D i g e s t Editor’s Note

DDRR.. DDOOBBBB’’SS DDIIGGEESSTT 22 AAuugguusstt 22001100 wwwwww..ddrrddoobbbbss..ccoomm

The “Visual Programming”
Silver Bullet

[]

By Jonathan
Erickson,
Editor In Chief

D r . D o b b ’ s D i g e s t Techno-News

By Hannah Hickey

Biochemists and computer scientists at the University of Washington two years ago launched

an ambitious project harnessing the brainpower of computer gamers to solve medical prob-

lems. The game, Foldit (http://fold.it/portal/), turns one of the hardest problems in molec-

ular biology into a game a bit reminiscent of Tetris. Thousands of people have now played

a game that asks them to fold a protein rather than stack colored blocks or rescue a princess.

Results reports show that Foldit is a success. It turns out that people can, indeed, compete with

supercomputers in this arena. Analysis shows that players bested the computers on problems that

required radical moves, risks, and long-term vision — the kinds of qualities that computers do not

possess.

“People in the scientific community have known about Foldit for a while, and everybody thought

it was a great idea, but the really fundamental question in most scientists’ minds was ‘What can it

produce in terms of results? Is there any evidence that it’s doing something useful?’”said principal

investigator Zoran Popovic (http://www.cs.washington.edu/homes/zoran/), a UW associate professor

of computer science and engineering.

Scientists know the pieces that make up a protein but cannot predict how those parts fit togeth-

er into a 3D structure. And since proteins act like locks and keys, the structure is crucial.

At any moment, thousands of computers are working away at calculating how physical forces

would cause a protein to fold. But no computer in the world is big enough, and computers may not

take the smartest approach. So the UW team tried to make it into a game that people could play and

compete. Foldit turns protein-folding into a game and awards points based on the internal energy of

the 3D protein structure, dictated by the laws of physics.

Tens of thousands of players have taken the challenge. The author list for the paper includes an

acknowledgment of more than 57,000 Foldit players, which may be unprecedented on a scientific

publication.

A major challenge in developing the game was to make it fun while still producing valid scientif-

ic results. There was a constant back-and-forth between scientists, game developers, and players to

achieve the best balance.

The class of problems in which humans were able to do better than computers required intuitive

leaps or major shifts in strategy. Future work will aim to better combine the strengths of experts,

computers, and thousands of game players.

“It’s a new kind of collective intelligence, as opposed to individual intelligence, that we want to

study,” Popovic said. “We’re opening eyes in terms of how people think about human intelligence

and group intelligence, and what the possibilities are when you get huge numbers of people togeth-

er to solve a very hard problem.”

The Foldit energy calculations are carried out by Rosetta, the procedure for computing protein

structures developed by coauthor David Baker, a UW biochemistry professor. Baker’s group has pre-

viously used donated computer cycles through Rosetta@home to help crunch through the trillions

DDRR.. DDOOBBBB’’SS DDIIGGEESSTT 33 AAuugguusstt 22001100 wwwwww..ddrrddoobbbbss..ccoomm

Computer Gamers Tackle
Protein Folding
The challenge in developing the game was to make it fun while still producing
valid scientific results

[]
EDITOR-IN-CHIEF
Jonathan Erickson

EDITORIAL
MANAGING EDITOR
Deirdre Blake
COPY EDITOR
Amy Stephens
CONTRIBUTING EDITORS
Mike Riley, Herb Sutter
WEBMASTER
Sean Coady

VICE PRESIDENT, GROUP PUBLISHER
Brandon Friesen
VICE PRESIDENT GROUP SALES
Martha Schwartz

AUDIENCE DEVELOPMENT
CIRCULATION DIRECTOR
Karen McAleer
MANAGER
John Slesinski

DR. DOBB’S
600 Harrison Street, 6th Floor, San
Francisco, CA, 94107. 415-947-6000.
www.drdobbs.com

UBM LLC

Pat Nohilly Senior Vice President,
Strategic Development and Business
Administration
Marie Myers Senior Vice President,
Manufacturing

TechWeb

Tony L. Uphoff Chief Executive Officer
John Dennehy, CFO
David Michael, CIO
John Siefert, Senior Vice President and
Publisher, InformationWeek Business
Technology Network
Bob Evans Senior Vice President and
Content Director, InformationWeek
Global CIO
Joseph Braue Senior Vice President,
Light Reading Communications
Network
Scott Vaughan Vice President,
Marketing Services
John Ecke Vice President, Financial
Technology Network
Beth Rivera Vice President, Human
Resources
Fritz Nelson Executive Producer,
TechWeb TV

DDRR.. DDOOBBBB’’SS DDIIGGEESSTT 44 AAuugguusstt 22001100 wwwwww..ddrrddoobbbbss..ccoomm

of possible orientations for the chains of amino acid molecules that

make up proteins.

The human thinking patterns may now help bolster Rosetta’s

skills. Researchers in Baker’s group are analyzing the most success-

ful Foldit strategies and trying to replicate them in the computer-

powered version.

This summer, the Foldit community has been focused on

problems in the Critical Assessment of Techniques for

Protein Structure Prediction competition (http://prediction-

center.org/casp9/index.cgi), the world’s largest comparison of

protein-folding computation strategies. Last year Foldit com-

peted as part of the Baker lab team. This year for the first

time Foldit players have their own team, taking on the most

sophisticated supercomputers in the world. Contest results

will be announced in December.

Now, Foldit players will focus on designing novel proteins.

Last year a Texas player who goes by the name “BootsMcGraw”

was the first Foldit player to have his new protein design synthe-

sized in the Baker lab. Although this particular structure did not

work, the researchers plan to try again and are optimistic about

the possibilities.

“I think that design problems are an area where human comput-

ing has huge potential,” Baker said. “People are good at building

things, so I’m expecting that people will be very good at building

proteins for different purposes. That’s where I’m expecting really

great things from Foldit.”

RReettuurrnn ttoo TTaabbllee ooff CCoonntteennttss

D r . D o b b ’ s D i g e s t

DDRR.. DDOOBBBB’’SS DDIIGGEESSTT 55 AAuugguusstt 22001100 wwwwww..ddrrddoobbbbss..ccoomm

D r . D o b b ’ s D i g e s t

The Requirements Payoff

Investing the time to create better require-

ments for a software project takes a major

leap of faith, since people tend to think the

extra up-front work will just delay develop-

ment. That’s generally true, but getting require-

ments right also prevents problems later that can

not only delay projects but lead to their failure.

Incomplete requirements and specifications, as

well as changing requirements, are a main cause of

project distress. For example, the FBI abandoned

its Virtual Case File case management software

project in 2005, along with $170 million and

700,000 lines of code, due in large part to poorly

defined and slowly evolving design requirements,

according to a scathing report by Department of

Justice’s Inspector General Glenn Fine. “It was a

classic case of not getting the requirements suffi-

ciently defined ... from the beginning,” Fine says

in the report. “And so it required a continuous

redefinition of requirements that had a cascading

effect on what had already been designed and pro-

duced.”

An error, omission, or misunderstanding in the

requirements forces developers to redo work

they’ve done based on the incorrect requirement.

Thirty percent or more of the total effort spent on

most projects goes into rework, and requirement

errors can consume 70% to 85% of all project

rework costs, according to a 1997 study by Dean

Leffingwell. Development teams often implement

functionality that someone swore they needed,

only to find that no one ever uses it. Techniques

that can prevent this wasted effort are a solid

investment.

What’s To Be Gained
Good preliminary requirements help CIOs make

effective business decisions regarding which proj-

ects to fund. Well-defined and documented final

requirements are critical to letting developers

devise the most appropriate approach, estimate

the effort needed to execute an iteration cycle or

complete the project, incorporate changes that will

deliver maximum customer value, and develop

accurate test cases to verify the implemented func-

tionality.

Putting more effort into requirements devel-

opment can actually accelerate software develop-

ment. At a large insurance company I worked

with, increasing the front-end requirements effort

from 19% to 33.6% of total effort reduced proj-

ects’ overall effort and cost by an average of 4%.

Another company trained its development teams

on requirements engineering and implemented

improved requirements practices. In a year, the

share of projects that were behind schedule

dropped from 21% to 12%, and the total days

those projects were behind dropped from 1,738

to 518.

While no one can predict what ROI you’re

going to get from your investment in better

requirements, consider these questions as a first

step in determining payback:

• What fraction of your development effort do
you expend on rework? Some rework is
unavoidable and adds value, but a lot of
rework is nothing but wasted effort.

• How much does a typical customer-reported
defect cost your organization? A system-test
defect? One of my clients spent an average of
$4,200 to deal with each customer-reported
defect. That was 21 times more than it cost
them to discover a defect through formal
inspection.

• What fraction of user-reported defects and
what fraction of defects discovered through
system testing stem from errors in require-
ments? Defect root-cause analysis is an excel-
lent technique to gauge how much you could
gain from improving quality.

By Karl Wiegers

Getting a project’s requirements right from the start can speed development and ward off problems

DDRR.. DDOOBBBB’’SS DDIIGGEESSTT 66 AAuugguusstt 22001100 wwwwww..ddrrddoobbbbss..ccoomm

• How much maintenance cost, from defect correction and
unplanned enhancements, can you attribute to requirement
defects such as missed requirements?

• How much could you shorten your delivery schedules if your
project teams could reduce requirement defects by, say, 50%?

Practices that result in fewer requirement defects will reduce

the amount of development rework your teams must perform. This

provides immediate payback through reduced development costs

and quicker time to market. Techniques that get your analysts and

customers working closer together also lead to products that bet-

ter meet customer needs and require less reworking. All of these

approaches have the potential to increase customer satisfaction.

Steps To Improve Requirements
In the quest for good requirements, first make sure you have

appropriately skilled and trained business analysts who can guide

the requirements development and management activities on each

project.

As your teams get up to speed and requirements become more

sophisticated, having the right tools can be a big help. Lots of

requirements management tools are available, including IBM

Rational RequisitePro, Micro Focus CaliberRM, Microsoft Visual

Studio Team System 2010, MKS Integrity, and Ravenflow Raven

2010.

With new projects, I begin at the top by clearly establishing the

business objectives. Defining the product vision and project scope

help ensure that all the work done aligns with achieving those

objectives. This includes assessing your current practices and

identifying areas that aren’t delivering desired results.

Improvement might require writing new processes, modifying cur-

rent processes, and selecting new templates for key requirements

deliverables.

Next, identify distinct communities or classes of users and

determine who will serve as the voice of the customer for each

such user class. To engage appropriate customer representatives, I

recommend designating “product champions” who are key cus-

tomer representatives engaged with the project on an ongoing

basis. This is much like the Agile development concept of the on-

site customer.

The “use case” technique, which focuses on expected usage

rather than on product features, is an excellent way to explore user

product requirements. It should be clear how the use cases will

align with business objectives. If they don’t align, there’s a prob-

lem. But use cases aren’t sufficient in every situation. Your analysts

also need to derive the functional requirements that developers

will implement to let users perform the use cases.

In addition, explore and document nonfunctional, quality-

related requirements such as usability, security, reliability, and

robustness. These attributes are vital to customer satisfaction.

Ongoing prioritization of the requirements also is crucial. Think of

the backlog of pending requirements as a dynamic list, not a static

snapshot frozen in time.

Don’t just assume the requirements are correct: validate and

verify them. You can begin “testing” your software as soon as

you’ve written the first requirement. On one project I was involved

in, I wrote a dozen or so functional requirements, then another

dozen or so test cases based on my vision of how the code would

operate. In writing the test cases, I discovered an error in one of

my requirements. I generally find these sorts of errors, omissions,

and ambiguities in my requirements at this point.

A well-structured and rigorous peer review or inspection of

requirements documentation is also a good investment. And final-

ly, an effective change management process will help ensure that

your project delivers the product that customers need.

Of course, the greatest investment you can make is the time you

spend eliciting, analyzing, specifying, validating, and managing

requirements. Time spent on these efforts is likely to accelerate a

project and make it run more smoothly.

These practices aren’t free, but they’re cheaper than waiting

until the end of a project or iteration, and then fixing all the prob-

lems. The case for solid requirements practices is an economic one.

With requirements, it’s not “You can pay me now, or you can pay

me later.” Instead, it’s “You can pay me now, or you can pay me a

whole lot more later.”

— Karl Wiegers is principal consultant with Process Impact,

where he focuses on practical software process improvement.

RReettuurrnn ttoo TTaabbllee ooff CCoonntteennttss

D r . D o b b ’ s D i g e s t

You can begin “testing” your software as soon as

you’ve written the first requirement

DDRR.. DDOOBBBB’’SS DDIIGGEESSTT 77 AAuugguusstt 22001100 wwwwww..ddrrddoobbbbss..ccoomm

D r . D o b b ’ s D i g e s t

Detecting Endian Issues with Static
Analysis Tools

“T here are 0010 0000 kinds of people in the world: Those that understand the differ-

ence between Big Endian and Little Endian, and those that do not.”

Since all binary processors (hardware or software) have an endian design, correct

processing of the data based on that endian design is extremely important. The state-

ment above is a version of another joke, but with a twist: The binary is represented in little endian, giv-

ing some mild humor for those that understand. For those that don’t understand endianness, the

humor is lost, much like a processor that has an endian processing defect. In this article, I describe the

kinds of defects that occur, and methods where static analysis tools can help detect programming errors

and enforce correct programming. But first, let’s define some terms:

• Endianness. The nature of byte layout in storage of multi-byte datatypes
• Big Endian. Byte store in most significant order across ascending address
• Little Endian. Byte store in most significant order across descending address

For example, the two-byte integer 54,321 = 0xD431

• Big Endian: stored as D4 31
• Little Endian: stored as 31 D4

It is easy to see that if a little endian processor stored the integer value 54,321 and subsequently

processed in the incorrect ascending address order, the value would be incorrectly derived as 0x31D4

or 12,756.

Hence, endianness issues in programming are twofold:

1. When endianness is not mixed, care must be taken if programs are to be portable across both little and

big endian processors: this is an “Endian Neutral” strategy.

2. When endianness in programs is mixed, datatypes must be processed with their corresponding correct

byte order: this is an “Endian Protocol” strategy.

Endianness and the C Programming Language
The C language gives the programmer many ways to shoot one’s self in the foot. Since the language

gives access to the bits and bytes of storage through pointers and other mechanisms, data access is

dependent upon the storage layout of the bytes.

The two strategies (a) and (b) above can both be handled with carefully coded algorithms. In the

case of (a), some general rules for C/C++, if diligently followed, can avoid algorithmic difficulties to

avoid endian-related problems. Here is a (non-exhaustive) list:

• Avoid using unions that combine different multi-byte datatypes — the layout of the unions may
have different endian-related orders.

• Avoid accessing byte arrays outside of the byte datatype — the order of the byte array has an
endian-related order.

Best practices for using static analysis tools and enforcing correct programming in C/C++

By Carl Ek

DDRR.. DDOOBBBB’’SS DDIIGGEESSTT 88 AAuugguusstt 22001100 wwwwww..ddrrddoobbbbss..ccoomm

• Avoid using bit-fields and byte-masks — since the layout of the
storage is dependent upon endianness, the masking of the
bytes and selection of the bit fields is endian sensitive.

• Avoid casting pointers from multi-byte type to other byte types
— when a pointer is cast from one type to another, the endian-
ness of the source (ie. the original target) is lost and subse-
quent processing may be incorrect.

All rules are similar in concept: Avoid processing bytes in an

order with assumptions about their storage layout. More rules for

C and C-style languages could be derived from the above, and rules

could be developed for other languages. Enforcing rules such as

the above will result in more lines of code that are portable across

different endian systems. Good implementations of this strategy

could be run on one endian system, and could be ported with min-

imal changes to another endian system.

What is the best practice when the endianness of datatypes in

a single application is mixed? In this case the programming must

properly process both Little Endian and Big Endian data, and an

Endian Protocol strategy is needed. The fundamental operation in

these algorithms require methods to swap bytes as data is

processed. This can be done in hardware or in software. However,

hardware solutions are not practical in many cases due to the vari-

ability of configurations and data to be handled. Software byte

swapping methods have been developed where the endianness is

defined or derived and the data bytes are processed in the correct

context based on their endianness.

In the C language, numerous bytes swap facilities have been

designed for this:

1. The swab function: to swap two adjacent bytes

2. Byte swapping macros:
• ntohs: network to host short
• ntohl: network to host long
• etc.

3. Inline bswap macros:

4. CFSwapInt16BigToHost, ... :

5. and more

Static Analysis Tools Features: Built-In
Detection and Extendable Detection
Some endian issues can be found with a static analysis tools’ built-

in features. These may or may not be flagged as specific to endian-

ness, but due to a side-effect of another issue: For example, in the

MISRA standards (http://www.misra-c.com/) there are numerous

rules that pertain to issues using multi-byte storage across differ-

ent datatypes. These are not specifically intended to enforce errors

in endian processing but may indeed, as the general pattern they

are detecting is common.

If the static analysis tool has extendable features, there can be

many more custom issues detected. Key requirements for develop-

ing extensions are:

1. Define syntactical specifications identifying error case(s).
2. Define syntactical specifications identifying passing case(s).
3. For both 1 and 2, if possible, define any flow-sensitive issues to con-

sider.

For best practices on the above, the error case must always give

some possible hint to the solution. And if the defect is identified

with a path which can be traced with the static analysis tool, fewer

false positives for the error case can be the result.

Developing custom static analysis tools to detect issues

requires that two main questions be answered first:

1. What is your strategy for coding:

“Endian-neutral?” “Endian-protocols?” or a blend?

2. What coding issues are you to enforce:

“What are the violations?” “What are the correct cases?”

Once those questions are answered, in particular question 2,

static analysis rules can be developed to detect issues and enforce

correctness.

Detecting Errors Related to Endianness:
Syntax and Semantics
Outside of exhaustive unit testing and code inspection, it would be

nice if compilers could tell programmers when endian issues are

present. But any warnings that a compiler could give on any poten-

tial problems would be so noisy that they would most certainly be

ignored.

All detection methods require some knowledge of the endian-

ness of the data being processed before any warning can be given.

Since compilers are not “smart enough” to know the contents of

variables at run time, their ability to detect endian-related errors is

limited. Detecting endian issues at a code inspection is easier if

naming conventions are used to identify Big Endian or Little

Endian data, but compilers are (usually) not privy to the knowl-

edge of such coding standards.

This is where static analysis tools can be used to detect issues

that are applicable to a specific environment. Static analysis tools

do not have to behave like compilers, which must conform to a lan-

guage standard; they can report on issues that violate such specif-

ic things as potential endian errors.

As a simple example, it is possible to develop a static analysis

rule to warn on this situation:

union {
short number;
char view[2];

} my_number;

But if the appropriate coding standard was in place, it could be

tailored to give no warning for this: (if the tool knew that

regex(BigEndian.*) names are Big Endian):

D r . D o b b ’ s D i g e s t

DDRR.. DDOOBBBB’’SS DDIIGGEESSTT 99 AAuugguusstt 22001100 wwwwww..ddrrddoobbbbss..ccoomm

union {
short number;
char BigEndian_view[2];

} my_number;

Detecting Errors Related to Endianness:
Protocol and Paths
The aforementioned example with a union is a case of detecting

errors by examining syntax and semantics. There are other errors

that can be detected when programming protocols are used to cor-

rectly handle endianness processing.

In these schemes, proper byte swapping is necessary, and pro-

tocols must be followed in order that numeric values are correctly

interpreted.

A simple, but typical, example of a protocol: reading from and

writing to a network. In this example, the length values must be

passed into the function-style macros ntohl() and htonl() before

they are used in the calls to data_alloc() and net_write(). Proper

byte-swapping is done for input and output information:

n = net_read (&sock, &netLen, 4);
/* ... process errors ... */
len = ntohl(netLen);. /* A */
data_alloc (&packet, len); /* B */

...
len = strlen(ret_string) + 1;
netLen = htonl(len); /* C */
if (net_write (context, &sock, &netLen, 4) != 4) /* D */
/* ... process errors ... */

A static analysis tool detector could be developed to keep track

of specific functions whose parameters must be processed by the

byte-swapping routines. If the byte-swapping routine has not been

called for each parameter (or the incorrect one has been called!) an

error or warning message could be issued.

The types and complexities of the protocols that can be imple-

mented depend a great deal upon the customization features and

abilities of the particular static analysis tool, the usability, and

other restrictions common across all static analysis tools.

Simple Rules Detecting Complex Problems
These examples show very simple coding for illustrative pur-

poses. But these simple rules are important to consider: They

can be defined with clarity and implemented with robustness.

As well, if implemented in static analysis tools, they can detect

subtle defects that exist inside complex code. As datatypes are

defined with higher complexity, the syntax and semantic guide-

lines can be violated in very obscure ways, resulting in defects.

Likewise, as coding is modified over time, protocol violations

can be mismanaged in non-obvious manners, where incorrect

execution paths result in unexpected but feasible cases, result-

ing in defects.

Higher Quality Code Earlier In the
Development Cycle
With correct development of static analysis tools, defects can be

found early in the development cycle: If the code can be compiled,

defects can be detected. Detection with a compile-time warning

can be developed as a custom warning for the environment and

application, warning of potential endianness errors. Even with

false positives, our experience has shown that clustering of warn-

ings on issues can indicate problems where protocols and/or data

definitions may not quite be clean enough, which could warrant re-

coding. And any software engineering requirement that all code

should pass a designated coding standard could certainly be

applied to passing static analysis tools that strictly enforce the

standard and detect defects and enforce correctness.

Some Basic Best Practices for Utilizing Static
Analysis Tools
Technology cannot always be left to do the job: the working plans

and processes of the software engineering teams must be considered.

The beginning of the project is the best phase to define and

institute any endian defect detection processes: “How are we going

to find the problems?” The answers to that question are done in

parallel with identifying the strategy for coding around endian

issues:

• “Byte-swapping methods?”
• “Data definitions?”
• “What is the correct process?”

If static analysis tools are to be used, the most important phase

is in the definition of violations and corrections. This is the phase

when detection methods can be developed. Once these are devel-

oped, the results of the detection during development can be aug-

mented by retuning the algorithms to enhance analysis detection

and iterating on more improvements.

The final step in the process is enforcing fixes to be made,

reviewing false positives for validity, and maintaining a regular

analysis schedule to detect defects as early as possible.

— Carl Ek is an architect at Code Integrity Solutions

(http://www.codeintegritysolutions.com/), a consultancy focused on

helping companies get more value from their static source code

analysis and build tool investments. Prior to Code Integrity

Solutions, Carl held senior engineering positions at Electronic Arts

and in the compiler development division at IBM.

RReettuurrnn ttoo TTaabbllee ooff CCoonntteennttss

D r . D o b b ’ s D i g e s t

DDRR.. DDOOBBBB’’SS DDIIGGEESSTT 1100 AAuugguusstt 22001100 wwwwww..ddrrddoobbbbss..ccoomm

D r . D o b b ’ s D i g e s t

iPhone: Recording, Playing, and
Accessing Video

One of the major updates included with the iPhone 3G was a built-in video camera. This

allows users to easily record video and save it to their media library. The code for recording

video is almost identical to the code to show the camera. It does, however, have a few checks

that are required. Listing 1 shows the code for bringing up the video camera interface.

Listing 1: Displaying the video camera

-(void) showVideoCamera {
if ([UIImagePickerController #1

isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera]) {
myImagePicker.sourceType = UIImagePickerControllerSourceTypeCamera;
} else {

NSLog(@"Camera not supported");
Return;

}
#2

NSArray *media = [UIImagePickerController availableMediaTypesForSourceType:
UIImagePickerControllerSourceTypeCamera];

If([media containsObject:kUTTypeMovie]) { #3
myImagePicker.mediaTypes = [NSArray

arrayWithObjects: kUTTypeMovie,nil];
[self presentModalViewController:myImagePicker animated:YES]; #4

} else {
NSLog(@"Video not supported");

}
}

#1 check to see if the camera is available
#2 get a list of the media types the camera supports
#3 check to see if the camera supports video
#4 show the video camera

The first thing we are doing in #1 is checking to see if the device has camera support. There are two

cases where this would return False. The first is if the user has an iPod touch. As of this writing, the iPod

touch does not support taking photos. The other case is if the camera is damaged on the iPhone.

In #2, we are checking to see what media types are supported by the camera. In this case, we are look-

ing for the media type kUTTypeMovie. If this is found, then the camera will support video. #3 performs this

check and sets the media type of our picker to kUTTypeMovie to tell it to display the video camera. By

default, it is set to kUTTypeImage, which specifies photos, so it is necessary that we set it.

Finally, in #4 we display the video camera on the screen. One great feature that Apple added is the abil-

ity to edit the video on-the-fly. This is very easy to integrate in our code. Simply add this line prior to dis-

playing the video camera:

myImagePicker.allowsEditing = YES;

Putting the SDK to work

By Brandon Trebitowski

DDRR.. DDOOBBBB’’SS DDIIGGEESSTT 1111 AAuugguusstt 22001100 wwwwww..ddrrddoobbbbss..ccoomm

This great one-liner from Apple adds a ton of functionality. Once

the user finishes recording the video, the delegate method

didFinishPickingMediaWithInfo: for the picker will be called. The

dictionary passed to this method will contain a system path URL

to the video file that was just recorded. Listing 2 shows how to

use this path to retrieve and play back the video that was just

recorded.

Listing 2: Playing the recorded video

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info {
NSURL * pathURL = [info objectForKey:

UIImagePickerControllerMediaURL];
MPMoviePlayerController * player =

[[MPMoviePlayerController alloc]
initWithContentURL:pathURL];

[player play];
}

The first thing this method does is retrieve the path URL from

the info dictionary. The path URL is the object stored with the key

UIImagePickerControllerMediaURL. Next, an MPMoviePlayer-

Controller is allocated with the contents of the path URL. This will

load the video and prepare it to play. The last thing to do is call the

play method and the video will begin.

— Brandon Trebitowski is the author of iPhone and iPad in

Action (http://www.manning.com/trebitowski/).

RReettuurrnn ttoo TTaabbllee ooff CCoonntteennttss

D r . D o b b ’ s D i g e s t

DDRR.. DDOOBBBB’’SS DDIIGGEESSTT 1122 AAuugguusstt 22001100 wwwwww..ddrrddoobbbbss..ccoomm

D r . D o b b ’ s D i g e s t

Technical Writing for the Kindle

T he “eBook” paradigm is gaining popu-

larity mainly because of the success of

Amazon’s Kindle e-reader device and

the hundreds of thousands of eBooks

available for download. This popularity was

underscored by Amazon’s recent announcement

that its eBook sales have for the first time sur-

passed sales of hard-back (not paperback) books.

Other companies are on the bandwagon, including

Apple with its iPad and Barnes and Noble’s with

its nook. eBook reader software is available on PC

and Apple platforms. You can download eBooks to

your iPhone, Blackberry, and iPod.

At relatively high prices. Kindle books are typ-

ically narrative text, fiction, and nonfiction com-

prising mostly words. Programming books have

generally lagged behind mainstream books

because technical books have requirements

beyond that. This article is about using tools

available to Kindle authors to write and publish

computer programming books for the Kindle.

Pros and Cons
The advantages to using a Kindle are threefold:

• Books are instantly available for wireless
download without an external Internet con-
nection

• Books are usually less expensive than their
printed counterparts

• You can carry your entire library with you
wherever you go.

Many books are free. Many others cost only

$0.99.

The advantages to authors are even greater.

Kindle authors are typically self-publishers. You

write, edit, layout, and publish your work yourself.

Kindle is like a “vanity press,” in which

authors pay a publisher to edit, produce, and

print the book. But with Kindle you don’t pay

anyone. And you do all the work yourself.

With traditional publishing, you submit a pro-

posal to a publisher or literary agent and wait for

a publishing contract. Or a rejection. If your book

is accepted, you deal with acquisitions editors,

copy editors, production editors, and all that

until the book is finally published. Not so with a

Kindle book. You do it all. Your book is not reject-

ed simply because a publisher thinks it won’t sell.

You even decide the price to charge.

Whatever you submit to Amazon gets pub-

lished, assuming, of course, you have the rights to

publish it. If you want to change something later

— content, price, cover — do so and upload the

changes.

Publishing on Kindle gives you access to

Amazon’s Author Page, which provides an online

personal website for you to list your books, both

print and Kindle editions. Here’s a link to my

Author Page on which you can find links to my

books: http://www.amazon.com/-/e/B001K8M1SA.

There are disadvantages to being a Kindle

author, too. Some of them align with the advan-

tages just discussed. The good news is also the

bad news.

First, you are your own worst editor, which

means the book is no better than your ability to

write and produce a book. Second, there is no

marketing support. No salesmen plugging your

book at bookstores. No bookstore shelves for

exposure. No reviews in newspapers and maga-

zines. And third, you compete with hundreds of

thousands of other Kindle books, many — per-

haps most — of which are not very good.

Remember, this is the poor man’s vanity press.

The Kindle is not particularly conducive to

research. You can’t flip pages, for example, and a

traditional index is impossible to produce

because there are no page numbers. There being

no pages, as such, there can be no footnotes,

although endnotes are possible. The page format

has limited dimensions and is user-configurable,

What does Kindle mean for the authors of technical books?

By Al Stevens

DDRR.. DDOOBBBB’’SS DDIIGGEESSTT 1133 AAuugguusstt 22001100 wwwwww..ddrrddoobbbbss..ccoomm

which can defeat your best formatting intentions. Source code,

tables, and such can be a bit of a challenge.

Disadvantages notwithstanding, now is an opportune time for

computer authors to join the eBook trend. Print media computer

books are on the critical list. Unless you are writing about the lat-

est trendy hot topic, publishers are not as interested in program-

ming and applications books as they used to be.

The Kindle Format
I’ve been working on some Kindle programming book projects, and

I hit some walls. The device has format limitations that get in a

tech writer’s way. Much of what you need to know to fit technical

content onto a Kindle is either undocumented or just hard to find.

I had to learn how to publish software code, screen shots, equa-

tions, tables, lists, flow charts, and so on, all the things you typi-

cally find in a programming book that are not narrative text.

Writing a novel? You can find lots of online help in formatting

narrative text in the forums at Amazon’s Digital Text Platform

Community Support forum website (http://forums.digitaltextplat-

form.com/dtpforums/index.jspa).

Your technical book will have narrative prose, too, so you

should get all such help. This article deals specifically with manag-

ing technical content in a book.

I’ll describe the process that works best for me. There are other

ways to do it. This is the procedure I’ve chosen.

Write the Book
First, you write the book. I use Microsoft Word for that task, build-

ing a Word document file for each chapter. You can put all the

chapters in one file, but that makes for a cumbersome document,

difficult to manage.

Use Word’s hierarchy of Header styles to organize each chap-

ter’s outline. That facilitates automatic generation of a table of con-

tents later. Don’t worry about fonts at this time. Just use whatever

makes it easiest for you to read and review as you write.

Use Word’s Normal style for the narrative.

I built my own styles for figure captions and program listing

titles. Those elements are centered and italicized using Kindle’s

default text font.

Illustrations
Build illustrations and figures with whatever image editor program

you prefer. Embed them in the chapters by using Word’s

Insert/Picture/From File command. You can flow text around pic-

tures if you want, but it’s better to have each figure stand alone.

The Kindle is a monochrome device, and screen shots can be a

bit hazy in that format. You might want to play with the contrast

settings in some figures. Make sure you critically preview all your

illustrations before you publish the book.

If you use the GIF image format, ensure that the transparency

mode for those files is disabled. Kindle doesn’t like it.

Page Layout
Kindle’s pages are not fixed-length. Page breaks depend on which

Kindle is used and how the user configures the display. Don’t

depend on page integrity to enhance your visual presentation. It

won’t work. Where you absolutely need a page break, use Word’s

Page Break command (Ctrl+Shift) to force one.

Cover Image
Use an image editor to make your cover image. Make the image

1200 pixels high by 900 pixels wide. You will include the cover

image at the front of the book. You will also upload it when you

publish the book so the book’s listing at Amazon has a cover to

display.

Source Code
For code, begin with a paragraph style that has 10-point Courier

font. Word has a style named code that fits those criteria. Then

after keying the code in, select the code and apply Word’s HTML

code style, a character style that you apply to keywords embedded

in narrative text as well as to program listings.

Lines of code should be less than 47 characters to avoid word

wrapping on the smaller Kindles. If that is not possible, advise

your readers in the introductory chapter to read code-ridden chap-

ters in landscape mode and perhaps with a smaller font.

Tables
Kindle does not display tables very well. The Kindle 1 does not

support borders. So, don’t use Word’s table feature to portray tab-

ular data. Instead, build tables as illustrations with a graphics edi-

tor program and embed them in your Word document as you do

other graphical images.

Equations
For equations, use Word’s Insert/Object/Equation Editor, with

which you create and edit an equation image that Word inserts into

the document as a graphical image.

When you save the chapter as HTML (discussed later) Word

saves equation .gifs in a folder named [filename]_files. These

images are badly formed. Word saves the .gif with incorrect trans-

parency data, and you have to fix it.

If you use a browser to display the chapter, the equation looks

fine. But when converted to Kindle format, the equation displays

as a solid black rectangle. Interestingly, when you open the equa-

tion’s .gif in an image editor, such as Windows Paint, it too displays

the solid block.

Open the .gif in a program such as Paint Shop Pro (Windows

Paint won’t do), and change the first color in the color palette to

solid white. That’s the background color, which is black, and which

is supposed to be transparent but isn’t. Save the .gif using the

option that disables transparency. That fixes the problem. You must

do that for all the equation images in all the chapters in the book.

D r . D o b b ’ s D i g e s t

DDRR.. DDOOBBBB’’SS DDIIGGEESSTT 1144 AAuugguusstt 22001100 wwwwww..ddrrddoobbbbss..ccoomm

Links
Your Kindle book might have shortcuts that allow the reader to

move from the current page to another topic referenced elsewhere

in the book. That topic might be in the current or a different chap-

ter. You can use Word’s Insert/Hyperlink command for these links.

Open the Hyperlink dialog and specify the text to display in the

hyperlink and a place for the link to go when the reader clicks it.

If the link is to a different chapter file, your first tendency is to

use the .doc filename. But that won’t work. The .doc file is only

where you saved the chapter. It is going to be converted to HTML

in a subsequent step, and the book will be built from HTML files.

So, when you build the hyperlink, have it point to the filename you

will use for the chapter’s HTML file.

Links need a fully qualified path. Most likely all your html files

will be in a common folder, in which case you can prefix the linked

filename with the dot-backslash (.\) token, which Word expands to

a fully qualified path.

If the link is to a location in the same chapter, that location

should have a paragraph header associated with it. The Hyperlink

dialog includes a section titled Place in this Document, which

shows the document’s outline as defined by Header styled text.

Select that option and choose a paragraph title to which to link.

Save to HTML
Save each chapter file as the Web Page, Filtered file type. That

builds an HTML document without a lot of the excess CSS and

HTML code that Word adds. From this point forward you’ll work

with HTML files in a text editor.

Tweak the Code
There are a couple of changes to make to the HTML files to get

code to display properly. Since every line of code is a paragraph as

far as Kindle is concerned, Kindle will indent it to the default para-

graph indent level. In order to get the maximum line width, you

can set the indents for code to zero. Open the chapter’s HTML file

and insert this line in the CSS <style> code at the top of the file.

p.code { text-indent:0in; text-align:left;}

This assumes that you use the Word style named “code” for

code listings.

If your code has blank lines that are important, you’ll have to

manually insert them. The conversion process, described soon,

eats blank lines in code listings. Look for all places in the HTML

file for where you find this code:

<p class=code>’<code> </code></p>

Insert this tag after it:

Don’t use multiple adjacent
 tags for multiple blank lines.

Insert a
 tag after each <p…> tag that represents a blank line.

Make an Index
An index is a daunting task for any publication medium, but the

Kindle makes it even more difficult. Kindle has no page numbers.

Consequently the traditional format with indexed items displayed

to the left of one or more page numbers does not work.

You can, however, build an index that associates indexed items

with a list of hyperlinks to paragraph headings in the text. Doing a

comprehensive index that way for a book of any size is an huge,

tedious, error-prone task.

Many authors consider it not worth the effort, particularly

since the Kindle has a text searching feature. But indexes often use

phrases not found in the narrative as indexes items.

I have not built one yet, but I am a strong believer in having a

comprehensive index in a technical book. Years ago, I wrote and

published in Dr. Dobb’s Journal programs to assist in extracting

indexeed items from word processing files and automatically

building the index. Those programs were, of course, relevant to

traditional publishing media and indexed to page numbers. No

doubt before I tackle my first Kindle index I will develop a way to

streamline the procedure with software. The plan is to use a spe-

cial Word character style that can be used to mark indexed items

in the Word versions of the chapters. These styles serve only as

markers.

Then the first program I write will scan the HTML files and

insert anchor tags into the text that identify the paragraphs.

Another program will extract the terms and association them with

the paragraphs in which they are found. A sort and a formatting

process builds the HTML file for the index.

Convert to Publishing Format
At this point, you have a number of HTML chapter files ready for

publication and a cover image. You need to get all this together

into a package in a format for publication. I use the freely avail-

able program named Mobipocket Creator (http://www.mobipock-

et.com/en/DownloadSoft/ProductDetailsCreator.asp) for that pro-

cedure.

To build the publishable book file, make a new project in

Mobipocket Creator. This step creates a .opf file in the a subfold-

er of the My Publications folder in My Documents. Subsequently

double-clicking that file starts up Mobipocket Creator with your

project loaded.

Add to the project all the chapters’ HTML files in the order in

which they should appear in the book. Add the cover image to the

project. Open the Table of Content view and fill in the form telling

Mobipocket Creator which HTML tags (h1, h2, etc.) to use in the

table of contents. Click the Build button. Mobipocket Creator builds

a file with the filename extension .prc. That is your publishable file.

D r . D o b b ’ s D i g e s t

DDRR.. DDOOBBBB’’SS DDIIGGEESSTT 1155 AAuugguusstt 22001100 wwwwww..ddrrddoobbbbss..ccoomm

Preview the Book
As you build your book, you should preview it frequently, particu-

larly the technical content. While you have only html to work with,

before converting to publishing format, you can preview the book

in your browser, which gives a rough preview of how the content

is formatted. But your CSS and HTML code might include features

that Kindle does not support. Eventually you need to see the real

thing.

Amazon’s Digital Text Platform includes a Preview feature that

displays the book in a webpage popup window. To use that pre-

view, you must open a new project and upload the book’s content.

This process is time-consuming, and the preview does not accu-

rately emulate Kindle’s display device. There is a more convenient

way. Downloaded the free Kindle for PC application

(http://www.amazon.com/gp/feature.html/ref=kcp_pc_mkt_lnd?do

cId=1000426311) to preview your work.

Install the program. Then double-click the .prc file that

Mobipocket Creator created with its Build command. That runs

Kindle for PC with your book open. This is a reasonable facsimile

of the book as Kindle will display it. The illustrations are crisper

and in color, however, and the display itself has more flexibility

with dimensions, so you should do the final preview on the Kindle

itself.

To preview on the Kindle, connect it to your computer with its

USB cable. It looks like a disk drive on your PC just as cameras,

memory chips, and MP3 players do. Copy the .prc file to the

Kindle’s Documents folder. Eject the Kindle and go to its Home

page. Your book is now among the other books stored in your

Kindle, and you can preview it.

Check out the illustrations and code text to ensure that they

display properly.

Publish Your Book
Publishing a Kindle book involves uploading the book’s con-

tents to Amazon’s Digital Text Platform website (https://dtp

.amazon.com/mn/signin).

You must set up an account and be logged in. There is no charge

for the service. You create each new project from this site. You

upload the book’s content file and its cover image to the dashboard.

After you set a price and assure Amazon that you have rights to the

book, you can publish it. A day or two later the book is available

for readers to download from Amazon’s Kindle Store website.

Amazon keeps an account of your sales and sends you some money

from time to time.

— Al Stevens is the author of numerous programming books and

a long-time contributor to Dr. Dobb’s. Al can be contacted at

alstevens.com

RReettuurrnn ttoo TTaabbllee ooff CCoonntteennttss

D r . D o b b ’ s D i g e s t

DDRR.. DDOOBBBB’’SS DDIIGGEESSTT 1166 AAuugguusstt 22001100 wwwwww..ddrrddoobbbbss..ccoomm

D r . D o b b ’ s D i g e s t

YAFFS2:
Yet Another Flash File System

A s Linux has become more widely

used in embedded systems, the num-

ber of file systems that work directly

with the flash storage (i.e. via MTD

device as opposed to some block device hardware

emulation layer such as the one present on most

DiskOnKey devices) has grown substantially.

First, embedded Linux systems used read-

only CramFS and SquashFS file systems. These

are still very much in use today, as many embed-

ded devices such as routers do not need a real

read-write file system. Such devices typically

store only a small amount of configuration infor-

mation that can change, occupying only a few KBs

(i.e. less than a single flash block and usually

written directly to the flash while root file system

resides on CramFS or SquashFS).

As the flash sizes increased and Linux moved

into more embedded niches, the need for read-

write flash file systems was answered by JFFS2

(http://sources.redhat.com/jffs2/), which for a

long time was the de-facto standard Linux flash

file system. As flash sizes grew even more and

devices such as cellular phones that store large

amounts of information (pictures, mp3 files)

started using Linux, JFFS2 reached its scalability

limits. As a result, new file systems specifically

designed for large NAND flash devices were

developed — UBIFS (http://www.linux-

mtd.infradead.org/doc/ubifs.html), LogFS (http://

www.logfs.org), and YAFFS. For a long time only

UBIFS was part of the mainline kernel and both

YAFFS2 and LogFS were available as a patches.

At some point, it appeared as though the develop-

ment of LogFS stagnated, with the latest patch

available for kernel version 2.6.24. However,

LogFS suddenly resurfaced and rather surprising-

ly was quickly merged into kernel 2.6.34, indicat-

ing that its developers kept working on this proj-

ect, albeit with little publicity. YAFFS2, which

contrary to LogFS was widely used, has under-

gone a similar process with respect to inclusion

into mainlaine Linux kernel. In the past, YAFFS2

developers did not make any significant effort to

put it into the mainline kernel, but that is going

to change now.

When I started my embedded file system eval-

uation, I was almost certain that eventually I

would choose UBIFS simply because it is part of

the mainline kernel and YAFFS2 is an external

patch. However, it turned out that YAFFS2 is actu-

ally easier to configure — I kept getting errors

while mounting the UBIFS partition until I dis-

abled the “Verify NAND page writes” kernel

parameter. Apparently this is a rather old and

well-known bug, still present in kernel 2.6.32,

which I use on my systems. This is pretty subjec-

tive, but I had zero issues with YAFFS2 even

though I had to patch the kernel. The patch works

smoothly as all YAFFS2 files reside in a single

directory “fs/yaffs2” and the only files that need to

be modified are those related to the build system.

YAFFS2
YAFFS, short for “Yet Another Flash File System”

(http://www.yaffs.net/), is a fast robust file system

for NAND and NOR Flash. YAFFS has been

around for several years, mainly used with embed-

ded systems and consumer devices. But YAFFS

hasn’t gained much traction, at least not until the

release of YAFFS2 (http://www.yaffs.net/yaffs-2-

specification-and-development-notes).

Welcome to the Flash File System club

By Sasha Sirotkin

DDRR.. DDOOBBBB’’SS DDIIGGEESSTT 1177 AAuugguusstt 22001100 wwwwww..ddrrddoobbbbss..ccoomm

All flash file systems, including YAFFS2, have to support

standard features such as wear leveling and must be power-

down resistant. Contrary to JFFS2, YAFFS2 (as well as UBIFS)

was initially designed for NAND flash even though it will work

with NOR too, which has some peculiar characteristics. The dif-

ferences between NAND and NOR flash are numerous and full

comparison is beyond the scope of this article, but as far as

flash file systems are concerned, the following ones are the

most important:

• Capacity. NAND flash tends to be much bigger than NOR;
16MB–512MB vs. 1MB–32MB

• Access interface. Random access for NOR vs. serial access for
NAND

• Speed. NAND is faster, especially for write and erase opera-
tions

• Reliability. NAND devices are allowed to ship with bad blocks

YAFFS was designed with the above NAND characteristics in

mind. To improve the mount time of large flash devices, YAFFS2

will try to save the RAM summary of the file system status on shut-

down, which can save the scan time. It only writes to the flash

sequentially in order to be compliant with modern NAND specifi-

cations. YAFFS2 uses out-of-band OOB flash data to mark and skip

bad blocks.

Core YAFFS2 algorithms dealing with flash were developed

as a user space application. This code resides in yaffs_guts.[ch].

This clear separation between OS dependent and independent

parts makes YAFFS2 very portable. It was initially developed

for Linux but later was successfully ported to WinCE, eCOS,

pSOS, and VxWorks. It is even supported by some bootloaders,

such as U-Boot.

As with most flash file systems, YAFFS2 is a log structured file

system, which allows it to write to flash storage sequentially. The

entries in the log are either data or header chunks. Each chunk has

an associated tag with the following information: object ID, chunk

ID, sequencer number, byte count, and some additional fields.

• Object ID identifies which object, i.e. inode or dentry, the
chunk belongs to.

• Chunk ID, along with byte count, gives the location of the
chunk inside the object.

• Sequence number is used to indicate obsolete chunks since
YAFFS2 cannot modify an existing one — each chunk has to be
written only once. The sequence number is incremented when
a new block (that is, a flash unit of erasure) is allocated for
usage, thus allowing chunks to be sorted in chronological order.

When a file is modified, instead of changing the information

directly in the storage as most file systems do, YAFFS2 writes a

new chunk to the log. Over time, some flash blocks will have a cer-

tain number of deleted, i.e. obsolete, chunks that need to be

garbage collected. The garbage collection process finds a suitable

block depending on the number of available erased blocks — it

will try harder by even processing blocks with a small number of

obsolete chunks, going into something called “aggressive mode” if

there are too few. When a block worth collecting is found, it will

iterate through all its chunks and copy those that are in use to a

new block. After that the block can be erased. YAFFS2 uses vari-

ous data RAM structures in order to increase performance. For

example, YAFFS2 holds a tree of chunks for each file, which allows

it to quickly find data chunks that belong to the file. For each flash

device there is a data structure that describes block information,

including the state of each chunk of that block.

Using YAFFS2 is straightforward. Assuming you already

patched the kernel, just erase your MTD partition using:

flash_eraseall /dev/mtd[x]

and mount it as YAFFS using:

mount -t yaffs /dev/mtd[x] /mnt/flash

You can copy files to it right away and YAFFS2 will take care of

everything. It is also possible to create a YAFFS2 image offline using

the “mkyaffs2image” utility, but the former option is preferrable as

YAFFS2 will properly use the OOB bits it is responsible for.

Flash File
System Evaluations
The Web is full of JFFS2 vs. YAFFS2 vs. UBIFS benchmarks, but

since they tend to be very subjective, I decided to measure what is

important for my particular application, i.e. mount time, writing

performance, and file system scan. I tested all three on an ARM9-

based AT91SAM926 processor with 64MB NAND flash and

128MB SDRAM, running the Linux 2.6.32 kernel with the latest

YAFFS2 patch. Not surprisingly, both YAFFS2 and UBIFS per-

formed significantly better than JFFS2. What was surprising is the

fact that both the YAFFS2 and UBIFS performance were very sim-

ilar. Mount time was measured using:

D r . D o b b ’ s D i g e s t

TTaabbllee 11

DDRR.. DDOOBBBB’’SS DDIIGGEESSTT 1188 AAuugguusstt 22001100 wwwwww..ddrrddoobbbbss..ccoomm

time mount -t jffs2 /dev/mtdblock0 /tmp/test/
time mount -t yaffs /dev/mtdblock0 /tmp/test
time mount -t ubifs ubi0:test /tmp/test

Write time using:

time tar xf /test/rootfs.arm.tar

That created an 81MB file system with 1865 files and read time

using:

time du -shc /tmp/test/

which scans the above file system. Table 1 summarizes the results.

As you can see, for some operations YAFFS2 is slightly

faster than UBIFS, and for some it is the other way around. All

in all, the difference does not look significant, at least for my

sort of application, so I had a hard time choosing the right one

for my FemtoLinux Project (http://femtolinux.com/).

Eventually, I decided to go with YAFFS2; despite its “external

patch” status, it seems to be more reliable and easier to use

than UBIFS and it certainly has better track record in commer-

cial products. Probably the only YAFFS2 disadvantage is the

lack of compression support; however, for most embedded

applications it is probably not an issue.

YAFFS2 is distributed free of charge under the GPL license.

A different license is also available from Aleph One, which is a

commercial company that develops and supports YAFFS. When

YAFFS2 is used with the Linux kernel it is distributed under

GPL; however, for other situations different licensing terms are

available.

— Sasha Sirotkin currently works on the FemtoLinux Project

(http://femtolinux.com/), improving Linux latency and real-time

capabilities. FemtoLinux’s design goal is to bring Linux performance

closer to that of an RTOS, such as VxWorks, to allow complex real-

time application development and easy porting.

RReettuurrnn ttoo TTaabbllee ooff CCoonntteennttss

D r . D o b b ’ s D i g e s t

DDRR.. DDOOBBBB’’SS DDIIGGEESSTT 1199 AAuugguusstt 22001100 wwwwww..ddrrddoobbbbss..ccoomm

Q&A:
What’s Behind Good Requirements

A s VP of product development for

DuckCreek Technologies, Michael Witt

deals with requirements every day. He

recently took time to talk with Dr.

Dobb’s editor in chief Jon Erickson.

Dr. Dobb’s: What is the first step in implementing a

requirements strategy?

Witt: A move to either introduce a requirements

strategy where none currently exist or implement a

different requirements strategy requires careful

attention and planning to change management. As a

first step it is critical to create a sense of need and

urgency throughout the organization that will be

affected. People know the difference between a real

need and the next “silver bullet”. Establish real need

in the minds of everyone involved, but don’t over-

look capturing their hearts as well. Use both statis-

tics & metrics and anecdotes to create a compelling

case for change, and involve 20% of your organiza-

tion in facilitating the change. A core group of

knowledgeable and motivated individuals can facili-

tate change more rapidly than a single leader from a

soap box. Finally, include in this opening salvo the

training necessary to educate people on require-

ments development and management. This means

that you have made some decision on the require-

ments model, the goals of your requirements pro-

gram, the principles and best practices that you want

to implement, and have at least narrowed down your

tools options to no more than two or three potential

vendors.

Dr. Dobb’s: Who should be involved in defining and

managing requirements?

Witt: The people who are going to use the software

built from the requirements. That first sentence cuts

to the chase; if you don’t have people who will use

the software involved in the requirements process

then the software will not fit the intended business

purpose. However, there are multiple skill sets

required to create software requirements that are

usable themselves. Requirements elicitation is a dif-

ferent skill from requirements engineering. It is gen-

erally a good idea to consider an out-facing product

manager to be responsible primarily for require-

ments elicitation and a business analyst to be

responsible for requirement engineering and devel-

opment. The key to success is flexibility. If you have

a hard and fast rule that business analysts can never

talk to outside stakeholders, then you lose opportu-

nities for speed and efficiency. With these two roles

covered, you cannot overlook the need for the entire

team to also participate on some level. If the team

doesn’t own the requirements, but is merely respon-

sible for reading them and filling the order, then you

lose ownership and choice. Employee engagement

can enable you to do more with fewer resources than

an organization that lacks employee engagement.

Enabling ownership and choice among the develop-

ment team in building products can make the differ-

ence between getting by and being wildly successful.

Dr. Dobb’s: What should a requirements set cover?

Witt: Requirements should provide insight into the

major functionality, features, and non-functional

characteristics of the system. There are very few

companies out there that are trying to build software

that human lives depend on, but a lot of companies

are building their requirements that way.

Requirements should provide a general direction for

the software, but software is a creative enterprise.

Most organizations begin with requirements out of

fear. They struggle to deliver software with business

value and the growing disquiet among their user

base drives them to determine that developers don’t

know what they are doing. Implementing require-

ments management in order to control developers is

a mistake.

Requirements management should be imple-

mented in order to drive business value. Keeping the

goal of delivering business value as priority one in

Requirements are the first step to delivering real software, to real people, in real businesses

by Jonathan Erickson

D r . D o b b ’ s D i g e s t Conversations[]

DDRR.. DDOOBBBB’’SS DDIIGGEESSTT 2200 AAuugguusstt 22001100 wwwwww..ddrrddoobbbbss..ccoomm

your requirements effort will get you closer to the right coverage

in your requirements set. Stay focused on business requirements,

don’t be afraid to specify technical requirements, and enable devel-

opment teams to have a say in all of it.

Dr. Dobb’s: Who should write, read, and sign off requirements?

Witt: I believe strongly in a team-based approach. I don’t think

that a single person can make the kinds of decisions required to

ensure that a requirements set is right. Having individuals on the

team responsible for their area of professional expertise allows

you to distribute sign-off responsibilities to people who know.

That being said, I have to ask why it is that sign-off is important.

Is sign-off a part of your process of ensuring that you are deliver-

ing business value or is it a method of protection? As a method of

protection requirements sign-off stinks because it is impossible to

communicate the nuances present in a massive requirements doc-

ument. In the end it isn’t protection at all because your “cus-

tomer” still ends up angry if you forget something. If you are

using requirements to hold the customer or stakeholders account-

able for their decisions then you are doing requirements wrong

and for the wrong reasons. It is the job of those eliciting and engi-

neering the requirements to ensure that they capture the business

needs. And it is a mistake to use sign-off as a method of holding

business owners accountable; all that does is enable the team to

have an escape clause. Success in software is delivering products

that meet business needs, not in delivering requirements that

enable you to enforce a contract.

Dr. Dobb’s: Are requirements cast in stone?

Witt: The only alternative path to change is obsolescence.

Requirements should reflect the business needs and goals of the

software. The easiest way to answer this question is to ask, How

often do your business needs for the software change? By asking

this question before you begin, software projects can be setup

for success. If your business requires software that meets busi-

ness needs that change monthly or quarterly (insurance software

for Commercial Lines meets this criteria), then your require-

ments management system must enable the business need for

change. Requirements are pointless in and of themselves, they

serve only to deliver real software, to real people, in real busi-

nesses.

RReettuurrnn ttoo TTaabbllee ooff CCoonntteennttss

D r . D o b b ’ s D i g e s t

D r . D o b b ’ s D i g e s t Book Review

DDRR.. DDOOBBBB’’SS DDIIGGEESSTT 2211 AAuugguusstt 22001100 wwwwww..ddrrddoobbbbss..ccoomm

Jolt Awards:
Excellence in Books

For any programmers out there who have ever asked the question, “What were they thinking when they designed this language?”

this book is for you. Masterminds of Programming: Conversations with the Creators of Major Programming Languages, by

Federico Biancuzzi and Shane Warden, takes you back to the early days of many programming languages to find out why the

designers did what they did. Authors Biancuzzi and Warden do an outstanding job of asking pertinent questions of the design-

ers. In fact, the questions and answers are more in the form of a conversation than a questionnaire. The chapters of the book are dedi-

cated to a single language and can be read in any order.

While discussing the language “APL,” the issue of complexity was raised. Having spent some time with APL, I was very eager to know

what Adin Falkoff, codesigner of the language, had to say about this, which was: “I do not agree with the statement that it is ‘complex.’”

Indeed.

The languages covered in this book are not limited to programming. I was pleasantly surprised to read what Grady Booch himself

had to say about the origin and evolution of UML. In this particular case, I found a strong correlation between the applied use of UML

and its drive toward simplicity.

Sometimes it takes a book like this to gain an appreciation for the decisions that were made way back when. From the chapter on

SQL, I learned how the language was intentionally made to be declarative rather than procedural for the reason that it facilitates opti-

mization. Had the decision been made to make it procedural, SQL may not have become the ubiquitous and accepted database language

that it is today.

What makes Masterminds of Programming particularly interesting and useful is that these conversations did not take place at the

beginning of the languages, but rather in present-day. Having the benefit of time to reflect on strengths and weaknesses of the languages,

their merits, and the context of why certain design decisions were made, gives readers a unique insight and perspective of these lan-

guages and their creators in a very enjoyable and thorough book.

RReettuurrnn ttoo TTaabbllee ooff CCoonntteennttss

By Jonathan Kurz

MMaasstteerrmmiinnddss ooff PPrrooggrraammmmiinngg:: CCoonnvveerrssaattiioonnss wwiitthh tthhee
CCrreeaattoorrss ooff MMaajjoorr PPrrooggrraammmmiinngg LLaanngguuaaggeess
bbyy FFeeddeerriiccoo BBiiaannccuuzzzzii aanndd SShhaannee WWaarrddeenn

OO’’RReeiillllyy MMeeddiiaa

$$3399..9999

[]

DDRR.. DDOOBBBB’’SS DDIIGGEESSTT 2222 AAuugguusstt 22001100 wwwwww..ddrrddoobbbbss..ccoomm

5 Trillion Digits of Pi

Back in 1981, fresh out of school, I was awestruck by Steve Wozniak’s program that calculated over

100,000 digits of e on an Apple II. (Anyone who has a scan of his article in the June 1981 issue of

Byte, please email me a copy!) Shortly after reading the article, I ported his program to the PDP-11 at

my office and duplicated his results, down to the last digit.

These days the stakes are much higher when it comes to calculating the values of constants. Alexander

Yee and Shigeru Kondo have just announced the calculation of pi to 5 trillion digits (http://www.number-

world.org/misc_runs/pi-5t/details.html). And oddly enough, this was accomplished on a desktop machine

running Windows server, not the Linux cluster I would have expected.

Here are some key stats:

Operating System
Windows Server 2008 R2 Enterprise x64

Software
y-cruncher (www.numberworld.org/y-cruncher/)

Processor
2 Intel Xeon X5680 @3.33 GHz offering 24 hyperthreaded processors

Disk Space
The computation required roughly 22TB of disk space, and the compressed result takes another 3.8TB

Time
The task took 90 days to complete, and 66 hours to verify

The y-cruncher software package that broke this record also holds records for several other constants,

including one trillion digits of e. So in 30 years, more or less, the desktop PC has gone from constant calcula-

tions under a million digits to over a trillion digits. That growth rate of 1.7x per year maps pretty well to

Moore’s Law (roughly, that the number of transistors that can be placed inexpensively on an integrated circuit

doubles approximately every two years), suggesting that we can expect these numbers to continue climbing for

at least a few more years.

Kudos to Alexander Yee and Shigeru Kondo on a smashing accomplishment!

ClICK HERE TO COMMENT ON THIS POST

(http://www.drdobbs.com/blog/archives/2010/08/5_trillion_digi.html)

RReettuurrnn ttoo TTaabbllee ooff CCoonntteennttss

By Mark Nelson

D r . D o b b ’ s D i g e s t Blog of the Month[]

DDRR.. DDOOBBBB’’SS DDIIGGEESSTT 2233 AAuugguusstt 22001100 wwwwww..ddrrddoobbbbss..ccoomm

Prefer Using Futures or Callbacks to
Communicate Asynchronous Results

A ctive objects offer an important

abstraction above raw threads. In a

previous article, we saw how active

objects let us hide the private thread,

deterministically organize the thread’s work, iso-

late its private data, express asynchronous mes-

sages as ordinary method calls, and express

thread/task lifetimes as object lifetimes so that we

can manage both using the same normal language

features. [1]

What we didn’t cover, however, was how to

handle methods’ return values and/or “out”

parameters, and other kinds of communication

back to the caller. This time, we’ll answer the fol-

lowing questions:

• How should we express return values and out
parameters from an asynchronous function,
including an active object method?

• How should we give back multiple partial
results, such as partial computations or even
just “percent done” progress information?

• Which mechanisms are suited to callers that
want to “pull” results, as opposed to having
the callee “push” the results back proactive-
ly? And how can “pull” be converted to
“push” when we need it?

Let’s dig in.

Getting Results: Return Values
and “Out” Parameters
First, let’s recall the active object example we

introduced last time.

We have a GUI thread that must stay respon-

sive, and to keep it ready to handle new messages

we have to move “save this document,” “print

this document,” and any other significant work

off the responsive thread to run asynchronously

somewhere else. One way to do that is to have a

background worker thread that handles the sav-

ing and print rendering work. We feed the work

to the background thread by sending it asynchro-

nous messages that contain the work to be per-

formed; the messages are queued up if the work-

er thread is already busy, and then executed

sequentially on the background worker thread.

The following code expresses the background

worker using a Backgrounder class that follows

the active object pattern. The code we’ll show

uses C++0x syntax, but can be translated directly

into other popular threading environments such

as those provided by Java, .NET, and Pthreads

(see [1] for a discussion of the pattern and trans-

lating the code to other environments).

The Active helper member encapsulates a pri-

vate thread and message queue, and each

Backgrounder method call simply captures its

parameters and its body (both conveniently auto-

mated by using lambda function syntax) and Send

that as an asynchronous message that’s fired off to

be enqueued and later executed on the private

thread:

// Baseline example
class Backgrounder {
public:

void Save(string filename) { a.Send([=] {
// … do the saving work …

}); }

void Print(Data& data) { a.Send([=, &data] {
do {

// … do the printing work for another piece
of the data …

} while(/* not done formatting the data */);
}); }

private:
PrivateData somePrivateStateAcrossCalls;
Active a; // encapsulates a private thread, and

}; // pumps method calls as messages

The GUI thread instantiates a single

Backgrounder object (and therefore a single back-

ground worker thread), which might be used

from the GUI thread as follows:

Handling asynchronous communication back to the caller

By Herb Sutter

D r . D o b b ’ s D i g e s t Effective Concurrency[]

DDRR.. DDOOBBBB’’SS DDIIGGEESSTT 2244 AAuugguusstt 22001100 wwwwww..ddrrddoobbbbss..ccoomm

class MyGUI {
public:

// When the user clicks [Save]
void OnSaveClick() {

// …
// … turn on saving icon, etc. …
// …
backgrounder.Save(filename);

// this fires off an asynchronous message
} // and then we return immediately to the caller

// …

private:
Backgrounder backgrounder;

};

This illustrates the ability to treat asynchronous messages like

normal method calls and everything is all very nice, but you might

have noticed that the Save and Print methods (in)conveniently

don’t have any return value or “out” parameters, don’t report their

progress or intermediate results, nor communicate back to the

caller at all. What should we do if we actually want to see full or

partial results?

Option 1:
Return a Future (Caller Naturally “Pulls”)
First, let’s deal with just the return value and output parameters,

which should be somehow communicated back to the caller at the

end of the asynchronous method. To keep the code simple, we’ll

focus on the primary return value; output parameters are conceptu-

ally just additional return values and can be handled the same way.

For an asynchronous method call, we want to express its return

value as an asynchronous result. The default tool to use for an

asynchronous value is a “future” (see [2]). To keep the initial

example simple, let’s say that Save just wants to return whether it

succeeded or failed, by returning a bool:

// Example 1: Return value, using a future
class Backgrounder {
public:

future<bool> Save(string filename) {
// Make a future (to be waited for by the caller)
// connected to a promise (to be filled in by the callee)
auto p = make_shared<promise<bool>>();
future<bool> ret = p->get_future();
a.Send([=] {

// … do the saving work …
p->set_value(didItSucceed() ? true : false);

});
return ret;

}

(C++0x-specific note: Why are we holding the promise by

reference-counted smart pointer? Because promise is a move-only

type and C++ lambdas do not yet support move-capture, only

capture-by-value and capture-by-reference. One simple solution

is to hold the promise by shared_ptr, and copy that.)

Now the caller can wait for the “future”:

future<bool> result = backgrounder.Save(filename);
…
… this code can run concurrently with Save()
…
Use(result.get()); // block if necessary until result is available

This works, and returning a “future” is generally a useful mech-

anism.

However, notice that waiting for a “future” is inherently a

“pull” operation; that is, the caller has to ask for the result when

it’s needed. For callers who want to find out if the result is ready

without blocking if it isn’t, “future” types typically provide a sta-

tus method like result.is_ready() for the caller to check without

blocking, which he can do in a loop and then sleep in between calls

— that’s still a form of polling loop, but at least it’s better than

burning CPU cycles with outright busy-waiting.

So, although the caller isn’t forced to busy-wait, the onus is still

on him to act to “pull” the value. What can we do if instead the

caller wants a “push” notification sent to him proactively when the

result is available? Let’s consider two ways, which we’ll call

Options 2 and 3.

Option 2: Return a Future (Caller Converts
“Pull” Into “Push”)
The “pull” model is great for many uses, but the example caller we

saw above is a must-stay-responsive GUI thread. That kind of

caller certainly doesn’t want to wait for the “future” on any GUI

thread method, because responsive threads must not block or stop

processing new events and messages. There are workarounds, but

they’re not ideal: For example, it’s possible for the GUI thread to

remember there’s a “future” and check it on each event that gets

processed, and to make sure it sees it soon enough it can generate

extra timer events to be woken up just so it can check the “future”

—but that seems (and is) a lot harder than it should be.

Given that a responsive thread like a GUI thread is already

event-driven, ideally we would like it to be able to receive the

result as a new queued event message that it can naturally respond

to just like anything else.

Option 2 is to have the caller do the work to convert “pull” to

“push.” In this model, the callee still returns a “future” as in

Option 1, and it’s up to the caller turn it into a proactive result.

How can the caller do that? One way is to launch a one-off asyn-

chronous operation that just waits for the “future” and then gener-

ates a notification from the result. Here’s an example:

// Example 2(a): Calling code, taking result as a future
// and converting it into an event-driven notification
class MyGUI {
public:

// …

// When the user clicks [Save]
void OnSaveClick() {

// …
// … turn on saving icon, etc. …
// …
shared_future<bool> result;
result = backgrounder.Save(filename);
// queue up a continuation to notify ourselves of the
// result once it’s available
async([=] { SendSaveComplete(result.get()); });

}
void OnSaveComplete(bool returnedValue) {

// … turn off saving icon, etc. …
}

D r . D o b b ’ s D i g e s t

DDRR.. DDOOBBBB’’SS DDIIGGEESSTT 2255 AAuugguusstt 22001100 wwwwww..ddrrddoobbbbss..ccoomm

The statement SendSaveComplete(result->get()); does two

things: First, it executes result->get(), which blocks if necessary to

wait for the result to be available. Then, and only then, it calls

SendSaveComplete; in this case, an asynchronous method that

when executed ends up calling OnSaveComplete and passes the

available result. (C++0x-specific note: Like promises, ordinary

“futures” are intended to be unique and therefore not copyable,

but are move-only, so again we use the shared_ptr workaround to

enable copying the result into the lambda for later use.)

Option 2 Variant: ContinueWith
As written, the Example 2(a) code has two disadvantages:

• First, it spins up (and ties up) a thread just to keep the asyn-
chronous operation alive, which is potentially unnecessary
because the first thing the asynchronous operation does is go
idle until something happens.

• Second, it incurs an extra wakeup, because when the “future”
result is available, we need to wake up the asynchronous
helper operation’s thread and continue there.

Some threading platforms offer a “future-like” type that has a

ContinueWith-style method to avoid this overhead; for example,

see .NET’s Task<T>. [3] The idea is that ContinueWith takes a con-

tinuation to be executed once the thread that fills the “future”

makes the “future” ready, and the continuation can be executed on

that same target thread.

Tacking the continuation onto the “future-generating” work

itself with ContinueWith, rather than having to use yet another

fresh async operation as in Example 2(a), lets us avoid both of the

problems we just listed: We don’t have to tie up an extra thread

just to tack on some extra work to be done when the “future” is

ready, and we don’t have to perform a wakeup and context switch

because the continuation can immediately run on the thread that

fills the “future.” For example:

// Example 2(b): Calling code, same as 2(a) except using
// ContinueWith method (if available)
class MyGUI {
public:

// …

// When the user clicks [Save]
void OnSaveClick() {

// …
// … turn on saving icon, etc. …
// …
shared_future<bool> result;
result = backgrounder.Save(filename);
// queue up a continuation to notify ourselves of the
// result once it’s available
result.ContinueWith([=] {

SendSaveComplete(result->get());
});

}
void OnSaveComplete(bool returnedValue) {

// … turn off saving icon, etc. …
}

Prefer to use a ContinueWith style if it is available in your

“futures library.”

Option 3: Accept an
Event or Callback (to “Push” to Caller)
Both of the alternatives we’ve just seen let the callee return a

“future,” which by default delivers a “pull” notification the caller

can wait for. So far, we’ve left it to the caller to turn that “future”

into a “push” notification (event or message) if it wants to be

proactively notified when the result is available.

What if we want our callee to always offer proactive “push”

notifications? The most general way to do that is to accept a call-

back to be invoked when the result is available:

// Example 3: Return value, using a callback
class Backgrounder {
public:

void Save(
string filename,
function<void(bool)> returnCallback

) {
a.Send([=] {

// … do the saving work …
returnCallback(didItSucceed() ? true : false);

}); }

This is especially useful if the caller is itself an active object and

gives a callback that is one of its own (asynchronous) methods. For

example, this might be used from a GUI thread as follows:

class MyGUI {
public:

// …

// When the user clicks [Save]
void OnSaveClick() {

// …
// … turn on saving icon, etc. …
// …
// pass a continuation to be called to give
// us the result once it’s available
shared_future<bool> result;
result = backgrounder.Save(filename,

[=] { SendSaveComplete(result->get()); });
}

void OnSaveComplete(bool returnedValue) {
// … turn off saving icon, etc. …

}

Since Example 3 uses a callback, it’s worth mentioning a draw-

back common to all callback styles, namely: The callback runs on

the callee’s thread. In the aforementioned code that’s not a problem

because all the callback does is launch an asynchronous message

event that gets queued up for the caller. But remember, it’s always

a good idea to do as little work as possible in the callee, and just

firing off an asynchronous method call and immediately returning

is a good practice for callbacks.

Getting Multiple or
Interim Results
All of the aforementioned options deal well with return values

and output parameters. Finally, however, what if we want to get

multiple notifications before the final results, such as partial

computation results, updated status such as progress updates,

and so on?

We have two main options:

D r . D o b b ’ s D i g e s t

DDRR.. DDOOBBBB’’SS DDIIGGEESSTT 2266 AAuugguusstt 22001100 wwwwww..ddrrddoobbbbss..ccoomm

• Provide an explicit message queue or channel back to the
caller, which can enqueue multiple results.

• Accept a callback to invoke repeatedly to pass multiple results
back to the caller.

Example 4 will again use the callback approach. If the caller is

itself an active object and the callback it provides is one of its own

(asynchronous) methods, we’ve really combined the two paths and

done both bullets at the same time. (Note: Here we’re focusing on

the interim progress via the statusCallback; for the return value,

we’ll again just use a “future” as in Examples 1 and 2.)

// Example 4: Returning partial results/status
class Backgrounder {
public:

// Print() puts print result into spooler, returns one of:
// Error (failed, couldn’t process or send to spooler)
// Printing (sent to spooler and already actively printing)
// Queued (sent to spooler but not yet actively printing)
future<PrintStatus>
Print(

Data& data,
function<void(PrintInfo)> statusCallback

) {
auto p = make_shared<promise<PrintStatus>>();
future<PrintStatus> ret = p->get_future();
a.Send([=, &data] {

PrintInfo info;
while(/* not done formatting the data */) {

info.SetPercentDone(/*…*/);
statusCallBack(info); // interim status
// … do the printing work for another piece of the data …

} while(/* not done formatting the data */);
p->set_value(/* … */); // set final result
info.SetPercentDone(100);
statusCallBack(info); // final interim status

});
return ret;

}

This might be used in the GUI thread example as follows:

class MyGUI {
public:

// …

// When the user clicks [Print]
void OnPrintClick() {

// …
// … turn on printing icon, etc. …
// …
// pass a continuation to be called to give
// us the result once it’s available
shared_future<PrintStatus> result;
result = backgrounder.Print(theData,

[=](PrintInfo pi) { SendPrintInfo(pi, result); });
}

void OnPrintInfo(
PrintInfo pi,
shared_future<PrintStatus> result

) {
// … update print progress bar to
// pi.GetPercentDone(), etc. …
// if this is the last notification
// (100% done, or result is ready)
if(result.is_ready()) {

// … turn off printing icon, etc. …
}

}

Summary
To express return values and “out” parameters from an asynchro-

nous function, including an active object method, either:

• Return a “future” to invoke that the caller can “pull” the result
from (Example 1) or convert it to a “push” (Examples 2(a) and
2(b), and prefer to use ContinueWith where available); or

• Accept a callback to invoke to “push” the result to the caller
when ready (Example 3).

To return multiple partial results, such as partial computations

or even just “percent done” progress information, also use a call-

back (Example 4).

Whenever you provide callbacks, remember that they are run-

ning in the callee’s context, so we want to keep them as short and

noninvasive as possible. One good practice is to have the callback

just fire off asynchronous messages or method calls and return

immediately.

On Deck
Besides moving work off to a background thread, what else could

we use an active object for? We’ll consider an example next time,

but for now, here’s a question for you to ponder: How might you

use an active object to replace a mutex on some shared state?

Think about ways you might approach that problem, and we’ll con-

sider an example in my next column.

References
[1] H. Sutter. “Prefer Using Active Objects Instead of Naked

Threads,” Dr. Dobb’s Digest, June 2010, www.drdobbs.com/high-

performance-computing/225700095.

[2] H. Sutter. “Prefer Futures to Baked-In ‘Async APIs,’” Dr. Dobb’s

Digest, January 2010, www.drdobbs.com/high-performance-com-

puting/222301165.

[3] Task.ContinueWith Method (Action<Task>); MSDN;

http://msdn.microsoft.com/en-us/default.aspx.

— Herb Sutter is a bestselling author and consultant on software

development topics, and a software architect at Microsoft. He can be

contacted at www.gotw.ca.

RReettuurrnn ttoo TTaabbllee ooff CCoonntteennttss

D r . D o b b ’ s D i g e s t

It’s always a good idea to do as little work as

possible in the callee, such as just firing off an

asynchronous call and immediately returning

